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Abstract
The problem of dipole–dipole decoherence of nuclear spins is considered for
strongly entangled spin clusters. We consider the pure dephasing part of the
dipole–dipole interaction which can be classically interpreted as a random field
fluctuating along the quantization axes. Due to the long (but finite) range nature
of dipole–dipole interaction this field is expected to be partially correlated at
the sites of different spins in the cluster. Consequently our results show that the
dynamics of the entangled spin cluster can be described as the decoherence
due to interaction with a composite bath consisting of fully correlated and
uncorrelated parts. The correlated term causes the slower decay of coherence at
larger times. The decoherence rate scales up as a square root of the number of
spins, giving the linear scaling of the resulting error. Our theory is consistent
with recent experiments reported on decoherence of correlated spin clusters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum information processing devices are expected to be an efficient tool for solving some
practical problems which are exponentially hard for classical computers [1]. Their potential
computational performance is achieved by exploiting the quantum evolution of many-particle
systems in exponentially large Hilbert space, necessarily including evolutionary steps through
entangled states. Experimental implementation of Shor’s quantum factoring algorithm in a
seven spin-1/2 nuclei molecule has been demonstrated [2].

The question of whether a scalable implementation of quantum computer is possible in
the near future implies therefore the question of whether one can protect the fragile entangled
states from a destructive environment. The dynamics of coherence loss of entangled many-
particle clusters has attracted much attention recently. Some authors have simulated the noisy
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environment as a single bosonic bath embracing the whole cluster [3–6]. Classically we may
think of some fluctuating random field affecting each particle in the cluster identically [7]. Such
an idealized situation occurs, for example, if the characteristic wavelength of the environmental
bosonic modes (for example, the characteristic phonon wavelength) is much larger than inter-
particle distances (cluster size). An alternative idealized situation in which the noise sources
acting on the constituents of each cluster are uncorrelated was also studied [5, 8, 9]. Here,
the perturbations are considered to be statistically independent and should be described in the
quantum case by individual baths related to each particle. In general, however, we cannot
expect that all particles of a cluster of a finite nonvanishing size will be subject to exactly the
same or completely uncorrelated fluctuations. Therefore, a realistic model of the environment
should be somewhere between these two limiting cases, since both long and short range
environmental modes can contribute to the interaction. Still, a quantitative account for a
partially correlated environment greatly complicates the analysis [7], even for a two-particle
system [10]. A specific example of a highly correlated system which is nowadays under
extensive study [11, 12] is the entangled cluster of interacting nuclear spins. Until recently,
experimental data on the decoherence of large clusters of highly entangled particles were also
unavailable. In 2004 the coherence dynamics of groups of up to 650 entangled nuclear spins
was observed for the first time [13]. Our study is motivated by this experimental breakthrough
indicating the partial correlation of the environment.

In this paper we derive the dependence of decoherence rates of large spin clusters due to
completely correlated and uncorrelated perturbations. The results are generalized to the system
consisting of nuclear spins I = 1/2 experimentally studied in [13] by using a solid-state nuclear
magnetic resonance (NMR) technique for powdered adamantane samples. Our results show
that its dynamics resembles the decoherence due to interaction with a composite bath with a
given ratio of correlated and uncorrelated terms. The dependence of the decoherence rate on
the number of spins in the cluster was obtained.

This paper is organized as follows. The investigated system and experimental procedures
are described in section 2. In section 3 we calculate the dynamics of the NMR signal for the
cases of totally correlated/uncorrelated external perturbations and for the experimental situation
when decay is caused by internal dipole–dipole interaction. Comparisons with experimental
data and discussions are given in section 4. Concluding remarks are summarized in section 5.

2. System

Our study was motivated by the recent results of Krojanski and Suter [13]. In their experiments
the system of nuclear spins I = 1/2 (protons) of the powdered adamantane sample was
explored by NMR methods. Initially, a system placed in the external magnetic field H0 along
the z axes is in thermal equilibrium. It is described by its density operator

ρeq = 1

2N

(
1 + γ h̄ H0

kT

∑
j

I j
z

)
, (1)

where N is the number of spins, γ is the spin gyromagnetic ratio, k is the Boltzmann constant,
T is the temperature and I i

z is the z component of the i th spin operator. With the help of
a special sequence of radio-frequency pulses [13] the high-order correlations between spins
grow, thereby creating an ensemble of weakly coupled spin clusters as sketched in figure 1.
As a result, to describe the evolution of spins in the sample it suffices to consider only the
dynamics of one such cluster with a well defined number of spins n [13–15]. This is called the
preparation step.
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Existence of high-order coherences in an n-spin system can be formally described by the
presence of the off-diagonal elements ρi j of the spin density operator in any representation
whose basis states can be characterized by the total quantum magnetic numbers: Mi |i〉 = Iz |i〉,
M j | j〉 = Iz | j〉. Following the notation used in multiple quantum NMR experiments [16] we
say that every off-diagonal density matrix element ρi j represents a coherence of the order M
where M = Mi − M j . The number of coherences (different off-diagonal elements) of the order
M in n-spin system at large n is given by

Cn+M
2n = (2n)!

(n − M)!(n + M)! � 22n

√
πn

exp

(
− M2

n

)
. (2)

It is conventional to assume that after a long pulse sequence spins are prepared in the state
described by the density operator ρ(0) = U(τ )ρeqU †(τ ) with all even coherences excited with
equal probability [13, 14]. Here the unitary propagator U governs the evolution of the system
during the preparation step of duration τ .

After the system has been prepared in this highly correlated state it decays under dipole–
dipole interaction given by the Hamiltonian

Hdd =
∑
j<k

d jk(3I j
z I k

z − I j · Ik), (3)

where d jk = 1
2 h̄2γ 2(1 − 3 cos2[θ jk])/r 3

jk and r jk , θ jk are the corresponding absolute value and
the angle with z direction of the vector connecting j th and kth spins.

The system, evolving according to

ρ(t) = exp

(
− i

h̄
Hddt

)
ρ(0) exp

(
i

h̄
Hddt

)
, (4)

does not produce an experimentally observable signal. To analyse the effect of dipole–dipole
interaction, it undergoes a conversion step by another sequence of radio-frequency pulses [14]
of duration τ ′ described by the propagator V : ρ(t + τ ′) = V (τ ′)ρ(t)V †(τ ′). During
this step multiple-quantum coherences are converted back to single-quantum longitudinal
magnetization. After applying a resonant frequency π/2 pulse which converts the longitudinal
magnetization into transverse magnetization the resulting longitudinal magnetization can be
determined by measuring the free induction decay. The free induction decay amplitude right
after π/2 pulse is proportional to

S(t) ∝ Tr[Izρ(t + τ ′)] = Tr[Iz Vρ(t)V †], (5)

where t is the time for which the system freely evolved under the dipole–dipole Hamiltonian
between the end of the preparation step and the beginning of the conversion step. Under a
special pulse sequence design [14] it is possible to achieve the condition of time reversal,
V † = U . Using this condition, and the fact that ρeq ∝ Iz , we obtain

S(t) ∝ Tr[ρ(t)ρ(0)]. (6)

The experiment has to be repeated for a sequence of decay times t to obtain the coherence
decay. The overall signal can be presented as a sum of the contributions corresponding to
different coherence orders M [13]

S(t) =
∑

M

SM(t). (7)

The decay times for SM(t) were also measured experimentally [13] as a function of coherence
order M for different cluster sizes n.
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3. Theory

3.1. Decay of NMR signal due to uncorrelated/correlated external baths

First of all, consider a model when the decay of coherence occurs due to interaction with
the external bath. We do not specify the bath itself and use the generic picture. In other
words, in this subsection we consider the system without dipole–dipole interaction between
spins. Instead we introduce some interaction with the external bath which causes the initial
spin coherence to decay. In this paper we focus only on the dephasing part of this interaction.
A classical analogue of such a model can be a cluster of spins in a fluctuating external magnetic
field directed along the z axis [7].

Henceforward, we use the Zeeman basis |a〉 = |a1 . . . an〉, where ai = ±1 and I i
z |ai〉 =

(ai/2)|ai〉. If we consider the interaction of a single spin with the bath, its evolution in the
Zeeman basis is given by

ρ±1,±1(t) = ρ±1,±1(0); ρ1,−1(t) = ρ1,−1(0)e−�(t), (8)

where we used the interaction representation and the explicit form of the decay function �(t)
is determined by the nature of the specific spin–bath interaction. Our main question is how
the rate of the collective decoherence of the correlated spin cluster, measured by the technique
given in the previous section, differs from that for the single spin dynamics (8). The answer
certainly depends on the degree of correlation of the bath at different spin sites.

As the first example we consider the limiting case of a completely uncorrelated
environment: each spin interacts with its own bath assuming there are no correlations between
the baths related to different spins. In this case the matrix elements of the n-spin system density
operator evolve according to [3]

ρab(t) = ρab(0) exp(−�ab(t)), (9)

where the collective decay function �ab(t) can be expressed in term of the single-spin decay
function �(t) as �ab(t) = f �(t) and f = (1/2)

∑
i |ai −bi | is the Hamming distance between

the spin states |a〉 and |b〉. The value of Hamming distance f has the same parity as the
coherence order M and is within the limits f ∈ [M, n]. The number of configurations for
given f and M for the system of n spin-1/2 can be found as

2n− f C f
n C

f +M
2

f � 22n

π
√

n f
exp

[
− ( f − n/2)2

n/2

]
exp

[
− M2

2 f

]
. (10)

We can calculate the observable decay of the NMR signal S(t) according to (6), (9) as

S(t) =
∑
a,b

|ρab(0)|2 exp[−�ab(t)], (11)

where we need to carry out the summation over all possible amplitudes |ρab|. The signal
contributions SM (t) can be evaluated by the use of the same formula (11). Although in this
case one needs to take the sum over only the subset of configurations {|a〉〈b|} ∈ M for
which the additional condition

∑
j (a j − b j) = 2M is satisfied. The situation is greatly

simplified by assuming that all even coherences are initially excited with equal probability:
|ρab(0)| = const if (1/2)

∑
j (a j − b j) = 0, 2, 4, . . .; while all other coherences are non-

existent (ρab(0) = 0) [13, 14]. We can write

SM (t) ∝
∑

a,b⊂M

exp(−i f �(t)). (12)

Integrating over all f with corresponding weight (10) we obtain, for n�(t) � 1, n 	 1 and
M � n/2,

SM (t) = exp

(
−n

2
�(t)

)
. (13)
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We are interested in times up to 1/e decay time where formula (13) is valid. Moreover, since
n�(t) � 1 the decay function is only in the onset regime: �(t) � 1/n 
 1 for n 	 1.
Therefore, we take only the lowest non-vanishing order of the decay function in time

�(t) = αt2 + O(t4). (14)

Using (13) and (14) we obtain

SM (t) = exp

(
−n

2
αt2

)
. (15)

We emphasize that while we used the short-time expansion for the decay function (14) we
expect the formula (15) to be valid up to 1/e decay time for a large number of spins n 	 1.

As a second example, we consider the case of a completely correlated environment when
the whole cluster interacts with the same external bath. The dynamics of the density matrix
elements is given by [3]

ρab(t) = ρab(0) exp(−M2�(t)), (16)

and the signal SM (t) decays as

SM (t) = exp
(−M2�(t)

) � exp(−M2αt2). (17)

Formula (15) should be compared with (17). Both results show that the decay of signal SM (t)
can be approximated by the Gaussian function up to 1/e decay times for n 	 1. However,
the M dependences for the two formulae are totally different. The decay of SM (t) for an
uncorrelated environment does not demonstrate any dependence on coherence order M , while
for correlated case it strongly depends on it. Thus, we established the distinctive features of
the influence of correlated/uncorrelated environments on spin cluster dynamics which can be
observed experimentally by NMR methods.

3.2. Decay of the NMR signal due to internal dipole–dipole interaction

In the experiment by Krojanski and Suter [13] the decoherence is caused not by the external
bath but due to internal dipole–dipole interaction between spins. However, as we show below,
the resulting behaviour of the system can be interpreted with the help of results obtained in the
previous subsection.

The dipole–dipole Hamiltonian (3) commutes with the Zeeman Hamiltonian

HZ = −γ h̄ H0

∑
j

I j
z . (18)

However, the complexity of the system, and especially the fact that two terms I j
z I k

z and I j · Ik

do not commute, makes it impossible to find the exact (analytical or numerical) solution to the
problem [14, 16, 17]. Existence of high-order coherences in the state described by the prepared
density operator ρ(0) also complicates the application of the traditional method of moments,
which enables one to describe the decay of coherence without solving explicitly for eigenvalues
and eigenstates of energy in the case of single-quantum NMR experiments [16, 18]. In our case
the decay of signal is not proportional to the autocorrelation function Tr{Ix(t)Ix }, as in the case
of decay of the free induction signal [17], but is given by the density operator correlator (6)
where one needs to evaluate the summation of an exponentially large number of terms. In
order to obtain the analytical results, we focus on the pure dephasing effect of dipole–dipole
interaction, neglecting any energy exchange between spins that is described by the flip-flop
term I j

x I k
x + I j

y I k
y in the Hamiltonian (3). The dipole–dipole dephasing Hamiltonian has the

form

H ∗
dd = 2

∑
j<k

d jk I j
z I k

z . (19)
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Figure 1. Sketch of a random array of nuclear spins. Two clusters in a partially correlated
environment are shown.

Because dephasing is not associated with the energy transfer mechanism it is generally the
fastest source of decoherence [19, 20]. It becomes the sole process for decoherence in the limit
of ‘unlike spins’ [16, 17] when spin exchange is suppressed. The consideration of only this
type of interaction enables analytical calculations which are also justified by good agreement
with experiment over a wide range of parameters, as will be demonstrated below.

In the Zeeman representation, the off-diagonal density matrix elements evolve according
to (9) where the decay function is given by

�ab(t) = it

2

∑
j<k

d jk(a j ak − b j bk). (20)

The dynamics of the normalized NMR signal (11) can be analytically expressed as

S(t) = 16
∏
j<k

∑
al ,bl =±1;

l �=k, j

|ρab(0)|2 cos2( 1
2 dkj t). (21)

The exact analytical expression (21) does not yet provide us with much information.
Specifically, we intend to obtain the explicit dependence on number of spins in the cluster.
For this purpose we again assume that all even coherences are initially excited with an equal
probability and the size of the cluster is large n 	 1 [13, 14]. After performing some algebra
(the details are given in the appendix) we obtain the expression for the normalized signal

SM (t) = 1 − pM2 αt2

2
− (1 − p)

n

2

αt2

2
+ O(t4), (22)

in the second order in time. Here α = M2/9 where M2 = (9/4)h̄−2 ∑
j d2

jk is the Van Vleck
expression for the second moment [17] and the degree of correlation p is defined as

p = 1

n

(∑
j

d jk

)2/∑
j

d2
jk, (23)

so that 0 � p � 1. Formula (22) is valid only at short time scales nαt2 
 1, while we are
also interested in much larger times up to nαt2 ∼ 1. However, expansion of the signal SM (t) in
higher orders in time becomes exceedingly difficult. Therefore, to continue (22) to the longer
times we use the analogy with the investigated limiting cases (15) and (17). Formula (22)
contains two terms proportional to M2 and n/2 which can be regarded as contributions from
correlated and uncorrelated perturbations to spin dynamics, respectively. In fact, the interaction
described by Hamiltonian (19) can be semiclassically interpreted as the perturbing magnetic
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Figure 2. Decoherence rate as function of coherence order for different spin cluster sizes.
The points represent experimental values [13]. The solid lines are obtained according to the
theoretical formula (24). The degree of correlation p and Van Vleck second moment evaluated
from comparison with experiment are given in table 1.

field at the site of each spin (parallel or antiparallel to the strong external magnetic field)
produced by all other spins in a cluster. The consequent spread of Larmor frequencies for
different spins in the cluster causes destructive interference, or dephasing, observable by the
decay of the NMR signal. The limit of totally correlated perturbation p = 1 corresponds to the
case d jk ≡ const leading to the same perturbing field for each spin in the cluster. In contrast,
the case of absolutely random coefficients 〈d jk〉 j = 0 gives p = 0 and fully uncorrelated
dynamics. The realistic situation is expected to be in between these two limiting cases. Thus,
we write (22) as

SM (t) = p exp(−M2αt2) + (1 − p) exp

(
−n

2
αt2

)
, (24)

which is mathematically exact in up to the second order in time but continued to the longer
times nαt2 ∼ 1. The total magnetic resonance signal from the cluster S(t) can be obtained
by summation over all contributions from different coherence orders SM (t) according to
formulae (7) and (24)

S(t) = p√
nαt2 + 1

+ (1 − p) exp

(
−n

2
αt2

)
. (25)

In order to understand whether the obtained formulae (24) and (25) adequately describe the
real experimental situation we should check them with experimental data. A comparison of the
presented theory and experiment is given in the next section.

4. Comparison of theory with experiment, and discussion

Recent experiments [13] allowed us to estimate the degree of correlation parameter for spin
clusters in adamantane samples. In figure 2 we show curves of the decay rates of various
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Figure 3. Decay of coherence from highly correlated spin clusters for different spin cluster sizes.
The points represent experimental values [13]. The solid lines are values predicted by formula (25).

Table 1. The degree of correlation and the second moment for C10H16 obtained from decoherence
rates for different cluster sizes.

n 26 41 71 116 189 309 477 650

M2 (109 s−2) 1.50 1.65 1.60 1.60 1.65 1.60 1.60 1.55
p 0.27 0.28 0.33 0.33 0.32 0.32 0.32 0.32

coherence orders for different cluster sizes fitted to experimental points. The decoherence
rate was defined as the inverse of 1/e decay time and was evaluated by solving the algebraic
equation SM (t) = 1/e where SM (t) is given by formula (24). The degree of correlation p
and the Van Vleck second moment M2 were extracted with the use of MATLAB software by
weighted least squares fitting to experimental data for every cluster size n. We minimized∑

i ( f (xi) − fi )
2/�2

i , where xi and fi are experimental points, f (xi) are corresponding
theoretical solutions and �i are experimental errors denoted by vertical bars in figure 2.
Obtained values of p and M2 are given in table 1. As follows from the formula, the definition
of second moment [18] is determined by geometrical configurations and does not depend on
cluster size n. Its moderate fluctuations around an average value (M2 = (1.60±0.05)×109 s−2)
can be attributed to experimental errors and corrections at small n. Obtained values for the
second moment are comparable but not identical with the previous theoretical estimates and
experimental measured values M2 � 2.6 × 109 s−2 for powdered solid adamantane [21, 22].
The difference can be explained either by the crude nature of the chosen model and the neglect
of flip-flop terms or by discrepancy in the adamantane samples used in different experiments.
The question could be resolved by additional measurement of the second moment M2 for the
given sample.

Taking the average value of M2 = 1.6 × 109 s−2 and values for p from table 1 it is
possible to predict the temporal dependence of the total NMR signal from the highly correlated
spin cluster (25) which was measured independently [13] for different cluster sizes. The
results shown in figure 3 are in good agreement with experiment. As can be seen from
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Figure 4. Examples of temporal dependence of the signal from a highly correlated spin cluster
with size n = 116 and three values of degree of correlation p for perturbation: p = 0 (dashed
line, uncorrelated perturbation), 0.33 (solid line, partial correlation corresponding to experimental
situation), 1 (dotted line, correlated perturbation). The inset shows the decoherence rate as a
function of coherence order M.

figure 3, the formula (25) describes the initial fast drop of coherence with reasonable accuracy.
The divergence at large times between formula (25) (exact up second order in time) and
experimental results can be attributed to the contribution of higher-order terms.

Let us note that the measured values of decoherence rates for SM (t) give us only one time
point in the temporal dynamics of the signal for each value of M and n. The parameters M2

and p obtained from fitting the solution of SM (t) = 1/e to the experimental data allow us to
reconstruct the total decay dynamics of SM (t) up to decay times 1/e. The following integration
over all M provides the decay of overall signal S(t) which was measured independently.
This procedure does not automatically guarantee the agreement of calculated values of S(t)
with experimentally measures ones. The correspondence of theoretical to experimental values
demonstrates the good degree of consistency of the presented theory.

Formula (25) allows us to analyse the influence of the degree of correlation on spin
dynamics. Figure 4 shows the decay of the NMR signal for spin clusters of intermediate size
n = 116 and three representative examples of degree of correlation p: p = 0 (uncorrelated
dynamics), p = 0.33 (partially correlated dynamics corresponding to the experimental
situation) and p = 1 (correlated dynamics). One can see that initially all three curves
decay equally. However, at later times the signal from the spin cluster subject to correlated
perturbation exhibits slower decay compared to that for uncorrelated perturbation. That result
comes from the behaviour of decoherence rate as function of coherence order M . As can
be seen from the inset of figure 4, for uncorrelated perturbation all coherence orders decay
with the same, comparatively high, rate (nα/2)1/2. By contrast, the decay rate for correlated
spin dynamics increases linearly with absolute value of M as α1/2|M|. For the most probable
configurations, which according to (2) are those with M ≈ 0, the decay rate for correlated
perturbation is actually less than that for uncorrelated perturbation. The fact that the correlated
environment is acting more delicately on specific groups of states is not surprising. In particular,
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quantum computing error avoidance schemes based on decoherence-free subspaces [4, 23] are
based on this property.

For implementation of large-scale quantum computation, the scaling of decoherence rate
with number of qubits is important. From the expression (25) it transpires that the decoherence
rate of a spin cluster defined as inverse 1/e decay time always increases as ∝√

n with number
of spins n, although the corresponding factor depends on degree of correlation p. The square
root of n scaling was indeed experimentally discovered recently by Krojanski and Suter [13].

For quantum information processing applications it is also important to evaluate the error
of a quantum computer, represented by a cluster of highly correlated spins, induced by dipole–
dipole interaction between spins. The error is defined as the deviation of the NMR signal
from its initial value due to decoherence processes during the time required for elementary gate
operation tg: δn = 1 − S(tg). In order to provide successful implementation of quantum error
correction schemes, one needs to maintain this error below the small threshold guaranteeing
fault-tolerance operation of these procedures [1]. Taking the smallness of the parameter δn into
account, one can use (25) to obtain

δn ∝ nt2. (26)

This shows that if the error is small it scales linearly with number of spins independently
of the degree of correlation. The linear scaling of error agrees with theoretical results for
bosonic models of the environment [6, 9], and suggests that the worst case scenario of
‘superdecoherence’ [3] is not realized for this particular system.

5. Summary

In summary, we have presented a theory of coherence decay of entangled spin clusters states
due to internal dipole–dipole interactions. Its dynamics resembles the decoherence due to
interaction with a composite bath consisting of fully correlated and uncorrelated parts. The
perturbation due to correlated terms leads to the slower decay of coherence at larger times. The
decoherence rate scales up as a square root of the number of spins giving a linear scaling of
the resulting error. The results obtained can be useful in the analysis of decoherence effects in
spin-based quantum computers.
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Appendix

The signal contributions SM (t) can be evaluated by use of the formula (11)

SM (t) =
∑

a,b⊂M

|ρab(0)|2 exp[−�ab(t)]. (A.1)

Here domain M denote all configurations |a〉〈b| = |a1 . . . an〉〈b1 . . . bn| related to the certain
coherence order M :∑

j

(a j − b j) = 2M. (A.2)
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For every configuration |a〉〈b| we can divide the total set of n spins into two subsets E and N,

ai = bi , ∀i ∈ E; a j = −b j , ∀ j ∈ N. (A.3)

By the use of definitions (A.3) the decay function �ab(t) can be simplified as

�ab(t) = i
t

4

∑
j,k

d jk(a j ak − b j bk) = i
t

4

∑
j∈E,k∈E

d jk(a j ak − b j bk)

+ i
t

4

∑
j∈N,k∈N

d jk(a j ak − b j bk)

+ i
t

2

∑
j∈E,k∈N

d jk(a j ak − b j bk) = it
∑

j∈E,k∈N

d jka j ak . (A.4)

Assuming that all even coherences are initially excited with equal probability, namely
|ρab(0)| = const for all a, b ∈ M (and for all other even order coherences), we obtain the
following formula for the decay of SM (t) according to (A.1) and (A.4)

SM (t) ∝
∑

a,b⊂M

exp

[
−it

∑
j∈E,k∈N

d jka j ak

]
. (A.5)

We can redistribute the summation in (A.5) in the following way∑
a,b⊂M

=
∑
E,N

∑
a j ,ak

i∈E,k∈N

. (A.6)

Here the first sum in the left part of the equation is over all possible choices of subsets E, N in
the set of n spins and second sum is over all possible values of a j , ak for i ∈ E, k ∈ N. It is
easy to see that values a j for j ∈ E can take any values a j = ±1 since they do not contribute
to (A.2) and, therefore, do not change coherence order M . We still have the condition for the
values ak , k ∈ N:∑

k∈N

ak = M. (A.7)

Thus, we can evaluate the summation over a j for j ∈ E first and obtain

SM (t) ∝
∑
E,N

∑
ak ,k∈N

∏
j∈E

cos

(
t
∑
k∈N

d jkak

)

∝
∑
E,N

∑
ak ,k∈N

(
1 − t2

2

∑
j∈E

(∑
k∈N

d jkak

)2

+ O(t4)

)
. (A.8)

Now we consider the term
∑

j∈E
(
∑

k∈N
d jkak)

2 to express it in terms of parameters of the
material. We write

d jk = d̄ j + δ jk, (A.9)

where average coupling constant is defined as

d̄ j = f −1
∑
k∈N

d jk . (A.10)

Here f is Hamming distance between |a〉 and |b〉 or the number of spins in subset N. Note,
that

∑
k∈N

δ jk = 0. By use of (A.7) and (A.9) we obtain(∑
k∈N

d jkak

)2

= (d̄ j)
2M2 +

∑
k∈N

δ2
jk, (A.11)
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where we neglected cross-terms
∑

k∈N
δ jkak whose contribution is negligible for the large

cluster sizes. For n 	 1 we also approximate the summation over subsets by the summation
over total cluster with correction to the number of terms in the sum:

∑
i = (n/(n− f ))

∑
j∈E

=
(n/ f )

∑
j∈N

. These assumptions should lead to the asymptotically correct value of SM (t) for
n → ∞. We then evaluate the the signal decay as

SM (t) ∝
∑
E,N

[
1 − t2

2

n − f

n
(pM2 + (1 − p) f )

∑
i

d2
ki

]
+ O(t4), (A.12)

where the parameter p is defined as

p = 1

n

(∑
j

d jk

)2/∑
j

d2
jk. (A.13)

After integration over all possible f we deduce the closed, analytical form for the signal, exact
up to second order in time,

SM (t) = 1 − t2

2

M2

9

(
pM2 + (1 − p)

n

2

)
+ O(t4), (A.14)

Here M2 = (9/4)h̄−2 ∑
j d2

jk is Van Vleck expression for the second moment [17].
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